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Abstract 

It’s a familiar point in anthropology that many norms are 
parochial, meaning they apply to people in certain groups (e.g., 
one’s ingroup) and not to others (e.g., one’s outgroup). One 
explanation for such parochialism is that people are just 
innately biased against outsiders. But it’s also possible that, 
given the evidence, people infer the parochiality of norms in 
statistically appropriate ways. This paper uses a Bayesian 
learning framework to investigate inferences of normative 
scope both experimentally and computationally. An 
experiment in which adult participants (n = 480) viewed 
sample violations of a novel rule among novel groups reveals 
that both sensitivity to statistical evidence and prior knowledge 
of relevant social categories are integral to computations of 
normative scope. In tandem with the experimental results, 
computational analysis supports the notion that degree of prior 
inclusivity bias (i.e., an expectation that a norm will be broad, 
rather than narrow, in scope) is another key factor. Together, 
these novel insights raise intriguing possibilities for integrating 
perspectives on norms research. 

Keywords: statistical learning, norms, moral psychology, 
Bayesian inference, computational modeling  

Introduction  

“When in Rome, do as the Romans do; when elsewhere, do 

as they do elsewhere.” 

 —proverb attributed to Saint Augustine 

 

Norms can be understood as inclusive or parochial: “Do not 

harm others” broadly applies to many groups, whereas “Do 

not harm your ingroup” is narrower. However, it is rarely the 

case that such boundaries of normative scope are explicitly 

mapped out. This poses an inductive challenge to naive 

observers: how does one learn to which group a candidate 

norm applies? One possible answer comes from findings in 

social cognition that document seemingly automatic, group-

based biases in normative inference (e.g., Dunham, 2018; 

Roberts, Gelman, & Ho, 2017a). However, another 

possibility is that, given the evidence, learners infer the scope 

of norms in statistically appropriate ways. 

The present study investigates the role of statistical 

learning in inferences of normative scope. We propose that 

both sensitivity to statistical evidence and knowledge of 

relevant social categories are integral to computations of 

normative scope. We begin by reviewing the evidence 

suggesting a central role for automatic group biases in 

normative inference, and then detail how a Bayesian 

inference framework can offer nuance to such accounts. 

A consistent theme in social cognition research is the 

extent to which social category knowledge is a deeply 

ingrained and highly influential factor in cognition. Indeed, 

among the field’s most striking findings are those which 

detail the influence of social category knowledge on 

judgment and behavior under minimal conditions (for an 

extensive review, see Dunham, 2018). Studies involving the 

minimal group paradigm (Tajfel, 1970) randomly assign 

isolated individuals to previously unfamiliar social groups 

based on arbitrary cues (e.g., a label, “the red group”). Such 

manipulations elicit ingroup biases in a variety of domains 

relevant to normative judgment, and many of these 

tendencies are early-emerging. For example, studies 

involving the minimal group paradigm have shown that 

children allocate more resources to ingroup members 

(Sparks, Schinkel, & Moore, 2017), make more positive trait 

evaluations of ingroup members (Richter, Over, & Dunham, 

2016), and demonstrate greater trust in the testimony of 
ingroup members (MacDonald, Schug, Chase, & Barth, 

2013). This body of work suggests that learners use the 

available evidence (e.g., perceptual, testimonial, etc.) to 

rapidly form representations of social categories which in 

turn shapes judgments about ingroup-relevant norms in a 

heuristic-like fashion.  

In a series of recent studies, Roberts and colleagues 

(Roberts, Gelman, & Ho, 2017a; Roberts, Gelman, & Ho, 

2017b; Roberts, Guo, Ho, & Gelman, 2018) examine a key 

cue that informs such heuristics by showing that children 

infer what groups ought to do from descriptions of general 

group behavior. In this work, Roberts and colleagues use a 

paradigm whereby participants are introduced to two novel 

groups, labelled “Hibbles” and “Glerks,” who are 

characterized in terms of morally neutral regularities (e.g., 

eating a certain kind of berry). If told that Glerks eat green 

berries and Hibbles eat red berries, participants will say that 

it is “not okay” when a Glerk eats a red berry. Note that by 

introducing the novel groups paradigm, Roberts and 

colleagues probe the influence of mere group, as opposed to 

ingroup, representations on normative judgment. In 

explaining these findings, the authors indeed propose a 

mechanism by which “group regularities may exert influence 

by rather automatically fostering a negative evaluative 

stance,” to non-conformity (2017a, p. 593), suggesting that 



 

an automatic group bias influences children’s judgments 

about norms.  

Although such findings seem to provide a plausible 

account of processes likely implicated in normative 

inference, we propose that incorporating key insights from 

statistical learning research would offer nuance to such an 

account. We’ll next outline how Bayesian inference provides 

a rational framework for inferences of normative scope, as 

well as when and why the Bayesian framework makes 

diverging predictions from accounts which solely emphasize 

the role of automatic group biases. 

Over the past decade, Bayesian theories of learning have 

been productive and influential across a number of domains: 

casual learning (e.g., Gopnik & Wellman, 2012), category 

discrimination (e.g., Kemp, Perfors, & Tenenbaum, 2007), 

language acquisition (e.g., Xu & Tenenbaum, 2007) and 

social inference (e.g., Lucas et al., 2014) among others. Such 

an approach is especially relevant and compelling here, too, 

because Bayesian inference provides a rational basis for 

inferences of normative scope. Indeed, previous work in 

philosophy has proposed theoretical accounts of Bayesian 

norm learning (e.g., Colombo, 2013; Muldoon, Lisciandra, & 

Hartmann, 2014; Nichols, forthcoming), and here we put a 

simple model to empirical test. Under the Bayesian 

framework, determining the scope of a norm involves 

assessing the degree to which the relevant evidence is 

consistent with competing hypotheses about that norm. In 

this case, the competing hypotheses are characterized by 

parochiality (i.e., the norm applies narrowly) and inclusivity 

(i.e., the norm applies broadly). Such candidate hypotheses 

are modeled as structured, symbolic representations to which 

learners assign different levels of certainty given the 

available evidence (c.f. Goodman, Tenenbaum, Feldman, & 

Griffiths, 2008).  

A key feature of the Bayesian model is the size principle 

(e.g., Perfors, Tenenbaum, Griffiths, & Xu, 2011; 

Tenenbaum & Griffiths, 2001), which dictates that when all 

observed evidence is consistent with a smaller hypothesis, 

that hypothesis should be preferred. To borrow an intuitive 

example from Nichols and colleagues (Nichols, Kumar, 

Lopez, Ayars, & Chan, 2016), a sequence of dice rolls 1, 1, 

3, 2, 1, 2, 4, 1 could have been generated from a 4-sided dice 

(H4) or a 10-sided dice (H10). However, it seems much more 

likely that H4 is true, since all observed rolls are less than or 

equal to 4.  In other words, if H10 were in fact true, this would 

be a highly suspicious coincidence in light of the available 

evidence. The size principle formally captures this intuitive 

fact: since H4 is consistent with a smaller set of possible 

observations, it should be preferred.  

Moving back to the case of normative inference, we can 

represent the size of the competing hypotheses in a nested 

structure. As shown in Figure 1, a norm being parochial in 

scope is consistent with a smaller set of subjects than the 

norm being inclusive in scope. Thus, if we observe members 

of Group A and Group B engaging in the same behavior, yet 

only members of Group B are ever sanctioned for violating 

the norm, the size principle dictates that we should infer the  

 
Figure 1: Hypotheses about the potential scope of a norm 

represented in a subset structure.  The hypothesis space picks 

out individuals who are subject to the candidate norm. 

 

norm narrowly applies to Group B. Note that the degree to 

which the evidence supports a parochial inference is 

dependent on the size of Group B relative to total population 

proportion (cf., Kushnir, Xu, & Wellman, 2010). If all sample 

violations come from a relatively small minority group, 

Bayesian learners should infer the norm is parochial in scope. 

However, if all sample violations come from a relatively 

large majority group, Bayesian learners should be more likely 

to infer the norm is inclusive in scope. In contrast, if an 

automatic group bias based on behavioral regularity 

determines such inferences of scope, then generalization 

should be similar in both scenarios, since behavioral 

regularity is held constant. Thus, incorporating elements of 

Bayesian inference stands to offer nuance to accounts of 

normative inference by predicting when and why observed 

group regularities will lead to parochial or inclusive 

inferences.  

In the present study, we put the Bayesian account to test. 

Using a novel rule learning paradigm (c.f., Ayars & Nichols, 

2017; Nichols, Kumar, Lopez, Ayars, & Chan, 2016) in 

conjunction with a novel groups paradigm (c.f. Roberts, 

Gelman, & Ho, 2017a), we hold behavioral regularity 

constant while varying the size of the target group relative to 

the total population. As predicted by the size principle, we 

expect to find parochial generalizations of the rule when 

sample violations come from small minority groups, but 

inclusive generalizations when sample violations come from 

large majority groups.  

Experiment 

Participants 

Adult participants (n = 480; 31.9% female, 67.5% male, 0.6% 

other; MAge = 35.5 years, SD = 10.6) were recruited from 

Amazon MTurk to complete a survey for modest 

compensation. An additional 77 participants were excluded 

from analyses for failing to complete the survey. All 

participants included in analyses completed the entire survey 

and passed a series of comprehension checks.  



 

 

Procedure 
We presented participants with a scenario in which two 

groups (labelled “Hibbles” and “Glerks”) live together on an 

island (in all but the 100% condition, see below). Participants 

were randomly assigned to one of four conditions. Across 

conditions, the size of the target group relative to the island’s 

total population was varied (i.e., 20%, 50%, 80%, or 100% of 

approximately 100 total inhabitants). In all conditions, a fixed 

proportion of each group (approximately 35%) was shown 

wearing a morally neutral item of clothing (e.g., Trial 1: 

ribbons, Trial 2: hats). To provide a concrete example: for 

Trial 1, participants in the 20% condition would view an 

island inhabited by 20 Glerks and 80 Hibbles (100 individuals 

in total), with 7 of the Glerks wearing a ribbon and 28 of the 

Hibbles wearing a ribbon (35% of the individuals in each 

group). 

Next, participants were told the island has rules and that 

their task would be to figure out one of the island’s rules. 

Participants then watched a video highlighting a sample of 4 

members of the target group (e.g., “Hibbles”) wearing the 

clothing item (e.g., a ribbon) as violations (“This is against 

the rule.”). Afterwards, participants were asked to infer if 

other individuals on the island were also violating the rule. 

We solicited judgments about all possible group 
member/clothing item combinations (order 

counterbalanced): another target group member with a 

ribbon, a target group member without a ribbon, a non-

sampled group member with a ribbon, and a non-sampled 

group member without a ribbon. For each individual, 

participants made a forced-choice judgment of whether “This 

is against the rule” or “This is not against the rule.” Next, 

participants made the same judgment about a visitor to the 

island who was wearing a ribbon. The visitor was called a 

“Zorg” and its body was purple and spiky.  

Participants also articulated their understanding of the rule 

in an open response item (“What is the rule?”) and provided 

confidence ratings of this understanding (a 7-point scale, 

“How confident are you that you know the rule?” with 1 = 

Not at all, 7 = Very). Participants then repeated the entire 

procedure in Trial 2, which was identical to Trial 1 except for 

the individuals wearing a different clothing item (e.g., hats). 

Coding 

We scored participants’ judgments as “This is against the 

rule” = 1 and “This is not against the rule” = 0. For the open 

response question, responses were coded for whether 

participants articulated a parochial rule (e.g., “Glerks cannot 

wear hats”) or an inclusive rule (e.g., “No hats allowed”). 

Responses that did not articulate a rule (e.g., “I just guessed”) 

were not counted. Responses that articulated a rule were 

scored as either ‘parochial’ = 0 or ‘inclusive’ = 1 by a coder 

who did not know from which condition the responses 

originated. 

 

 

 

Figure 2: Example of stimuli as presented to participants in 

the 20% condition. The red text boxes above the sampled 

individuals read, “This is against the rule.” 

 

Results 

Were judgments of normative scope sensitive to statistical 

evidence? For each group member/clothing item 

combination, we ran a logistic regression model with 

judgment score as the dependent variable and condition, trial 

number, and clothing item as independent variables. As 

expected, the results suggest that judgments of normative 

scope were sensitive to statistical evidence. When 

generalizing the rule to individuals from the non-sampled 

group (β = 0.640, SE = 0.070, p < .001) and the visitor (β = 

0.427, SE = 0.067, p < .001), the results varied as a function 

of the relative population proportions. Participants did not 

apply the rule to the target group at significantly different 

rates across conditions (β = -0.173, SE = 0.101, p = .09).  

Post-hoc analyses confirmed this pattern (see Figure 3). In 

each condition, participants applied the rule most frequently 

to members of the target group (MTarget= 0.90, 0.87, 0.92, 0.83 

in the 20%, 50%, 80%, and 100% conditions, respectively), 

whereas participants were most likely to think the rule 

applied narrowly when sample violations came from a 20% 

minority (MNon-sampled = 0.28, SDNon-sampled = 0.45, MVisitor = 

0.42, SDVisitor = 0.49), followed by the 50% condition (MNon-

sampled = 0.39, SDNon-sampled = 0.49, MVisitor = 0.48, SDVisitor = 

0.50) followed by the 80% condition (MNon-sampled = 0.48, 

SDNon-sampled = 0.50, MVisitor = 0.53, SDVisitor = 0.50). Finally, 

when the population contained only one group (the 100% 

condition), participants generalized the rule to all novel 

individuals (MNon-sampled = 0.71, SDNon-sampled = 0.46, MVisitor = 

0.72, SDVisitor= 0.45). 

Next, we ran a logistic regression model with open 

response score as DV and condition as independent variable. 

As with the judgment scores, open response scores also 

varied as a function of condition (β = 0.726, SE = 0.077, p < 

.001). Once again, post-hoc analyses show participants most 

frequently articulated a parochial rule in the 20% condition 

(M = 0.30, SD = 0.46) and the 50% condition (M = 0.33, SD 

= 0.47), followed by the 80% condition (M = 0.50, SD = 

0.50), and lastly the 100% condition (M = 0.78, SD = 0.41). 

Thus, participants' own articulation of the rule provides 

further evidence that judgments of normative scope are 

sensitive to statistical evidence. Participants were most likely 

to articulate a parochial rule when sample violations  



 

 
 

Figure 3: Mean judgment score for each candidate group 

member. Lower bars indicate subjects more frequently judge 

the rule to be parochial in scope. Error bars represent the 

standard error. 

 

were drawn from a minority or equal group, and participants 

most likely to articulate an inclusive rule when sample 

violations were drawn from a homogenous population. 

Confidence ratings were high on average (M = 4.73, SD = 

1.63). Confidence ratings differed significantly between the 

20% condition (M = 4.38, SD = 1.74) and the 100% condition 

(M = 5.05, SD = 1.66) (20% vs. 100%: t(239)= -3.1, p = 

0.006, d = 0.40). There was no significant difference between 

ratings in the 20% condition, the 50% condition (M = 4.77, 

SD = 1.51), and the 80% condition (M = 4.71, SD = 1.55), 

nor was there a significant difference in ratings between the 

50%, 80%, and 100% conditions.  

Computational analysis 

While the main results are broadly consistent with the 

proposed Bayesian framework, a formal computational 

analysis can provide further insight regarding the extent to 

which such inferences are rational.  

Formally, the inference can be defined as learning a rule R 

from a set of examples D from some known domain U, where 

D = d1,…, dn. The proposed model assumes the learner has 

access to a hypothesis space H that contains the set of 

candidate hypotheses for representing the rule R and a 

probabilistic model that relates h  H to the evidence D. The 

Bayesian learner computes the posterior probabilities p(h|D) 

for different hypotheses h  H, using Bayes Rule:  

 

𝑝(h|D) = 
𝑝(𝐷|ℎ)𝑝(ℎ)

∑ 𝑝(𝐷|ℎ′
)𝑝(ℎ′)

ℎ′ 𝐻 

 

 

We can further specify this model with the learner’s 

assumption that violations are sampled at random and 

independently from the true rule to be learned. This results in 

the following likelihood function, which constitutes a formal 

instantiation of the size principle: 

 

𝑝(𝐷|ℎ) =  [
1

𝑠𝑖𝑧𝑒(ℎ)
]

𝑛

 

 

where n is the number of violations observed. In order to 

model this inference, four key assumptions must be made.  

First, H is assumed to contain only two hypotheses relating 

to the rule: hinclusive, the hypothesis the rule applies to all 

observed ribbon-wearers, and hparochial, the hypothesis the rule 

only applies to ribbon-wearers from the target group.  

Along these lines, the second assumption is that hparochial  

hinclusive, reflecting the nested structure as specified 

previously. This allows us to characterize size(hinclusive)= 1 

and express size(hparochial) as relative percentage of 

size(hinclusive).  

Third, it is assumed that the rule can only be applied to the 

observed population of ribbon-wearers (as participants in our 

study are made to believe). Correspondingly, we can set 

size(hparochial) = .20 in the 20% condition, size(hparochial) = .50 

in the 50% condition, size(hparochial) = .80 in the 80% 

condition, and size(hparochial) = 1 in the 100% condition.  

Fourth and finally, the prior degree of belief in the rule 

being inclusive, as opposed to parochial, can be expressed by 

the ratio of p(hinclusive) to p(hparochial). Thus, for example, prior 

to observing any sample violations an unbiased learner would 

have a prior ratio of 1:1, whereas a learner who believes an 

inclusive rule is twice as likely as a parochial rule has a prior 

ratio of 2:1. In this simple case, the ratio, rather than exact 

values, is what matters because there are only two candidate 

hypotheses (h is hinclusive and h’ is hparochial, if you will), so 

Bayes Rule reduces the two priors to a ratio when the 

respective likelihoods are held constant, as is the case here. 

With these assumptions in mind, we can model the 

inference under the different population proportions by 

setting the sampled violations n = 4 and varying inputs for 

size(hparochial) and the prior ratio.  

As shown in Figure 4, an idealized, unbiased Bayesian 

learner (prior ratio = 1:1) will always prefer hparochial as long 

as it is smaller than hinclusive, as predicted by the size principle. 

Thus, Bayesian learners must have some degree of prior 

inclusivity bias in order to favor hinclusive. Indeed, such an 

inclusivity bias is consistently reflected in our experimental 

results. In comparison to the unbiased Bayesian learner, 

participants were more likely to infer an inclusive rule across 

all conditions.  

When we consider Bayesian learners with varying degrees 

of inclusivity bias, a second key trend emerges. No matter the 

degree of inclusivity bias, Bayesian learners should favor 

hparochial when size(hparochial) < 25% of size(hinclusive). On the flip 

side, Bayesian learners with inclusivity bias should favor 

hinclusive when size(hparochial) > 85% of size(hinclusive). This trend 

is also broadly reflected in our experimental results: the 

majority (71%) of participants in the 20% condition inferred 

a parochial rule, and the majority (70%) of participants in the 

100% condition inferred an inclusive rule.  

For the regions in between, when size(hparochial) < 85% of 

size(hinclusive) and > 25% of size(hinclusive), the degree of 

inclusivity bias begins to largely differentiate which learners 

will favor a parochial or inclusive rule. As such, experimental 

results in the 50% and 80% conditions are consistent with  



 

 
 

Figure 4: Computed posteriors for hinclusive (y-axis) plotted 

against relative size of hparochial to hinclusive (x-axis). The black 

points correspond to an idealized, unbiased Bayesian learner 

(prior ratio = 1:1). The gray points correspond to Bayesian 

learners with varying degrees of prior inclusivity bias (range 

of prior ratios, lowest to highest: 2:1 to 200:1). The green 

points correspond to the observed percentage of inclusive 

judgments in each condition, with error bars representing 

standard error. The horizontal black line denotes when 

p(hinclusive|D) = .50. 

 

moderate inclusivity bias: 61% of participants in the 50% 

condition and 52% of participants in the 80% condition 

inferred a parochial rule. 

Next, a probability of generalization function can be 

specified to predict the results regarding the visitor. Formally, 

the learner must decide whether any given new individual z 

belongs to the extension of R, given the observations of D. 

Thus, a learner must compute a probability of generalization 

by averaging the predictions of all hypotheses weighted by 

their posterior probabilities:  

 

𝑝(𝑧 ∈ 𝑅|𝐷) =  ∑ 𝑝(𝑧 ∈ 𝑅|ℎ)𝑝(ℎ|𝐷)

ℎ∈𝐻

 

 

We can model this computation by using our observed 

posteriors for hinclusive and hparochial (i.e., the actual percentage 

of participants who inferred an inclusive or parochial rule in 

each condition) and varying the perceived likelihood of the 

inclusive rule extending to the visitor (i.e., 𝑝(𝑧 ∈ 𝑅|ℎ𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒)). 

For the parochial rule, this was set to a low constant 

(𝑝(𝑧 ∈ 𝑅|ℎ𝑝𝑎𝑟𝑜𝑐ℎ𝑖𝑎𝑙) = 0.05) to reflect psychological 

plausibility—i.e., people who originally infer a parochial rule 

are not likely to perceive that rule extends to a new group, 

though it remains a non-negligible possibility. As shown in 

Figure 5, when the visitor is deemed highly likely to belong 

to the same social category as the non-sampled group (i.e., 

‘subjects of the rule’), computational results approximate the 

observed data, albeit with a modest inclusivity bias yet again.  

 
 

Figure 5: Comparing the expected and observed judgment 

scores for the visitor in each condition assuming 

(𝑝(𝑧 ∈ 𝑅|ℎ𝑝𝑎𝑟𝑜𝑐ℎ𝑖𝑎𝑙) = .05). The black points correspond to 

Bayesian learners with maximum certainty that the visitor 

would be a subject of the rule, if the rule is inclusive  
(𝑝(𝑧 ∈ 𝑅|ℎ𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒) = .99). The gray lines represent Bayesian 

learners with a corresponding range of certainties (from .98 

to .80). The purple points correspond to the percentage of 

participants who extended the rule to the visitor in each 

condition. Error bars represent standard error.  

Discussion 

One explanation for parochialism is that people are just 

innately biased against outsiders. However, it’s also possible 

that, given the available evidence, people infer the 

parochiality of norms in statistically appropriate ways. 

Although a great amount of research details the ways in 

which automatic group biases can influence normative 

judgment, experimental results here indicate that inferences 

of normative scope are sensitive to statistical evidence in a 

manner consistent with Bayesian inference. When sample 

violations came from a minority group, participants tended to 

infer parochiality. When sample violations came from a 

majority group, participants were more likely to infer the 

norm applied inclusively. This pattern of results suggests that 

components of rational statistical inference can indeed play a 

role in normative learning. Formal Bayesian analysis broadly 

supports this conclusion and further illuminates that the 

degree of prior inclusivity bias, or favoring a broad 

generalization of the rule, is an additional key factor.  

Combining insights from these empirical and 

computational perspectives raises intriguing open questions 

for further investigation. As mentioned, we designed our 

experiment based on a novel groups paradigm (no real-world 

social groups) with no role for personal identity (no inclusion 

of participants as group members). For normative learning in 

everyday contexts, it is plausible that knowledge of the 

groups’ typical characteristics and/or one’s own personal 

identity play a role in judgments of normative scope. There 

is a clear need for further research to investigate how 

manipulating these key features effects learning from 

statistical evidence by shifting expectations about the scope 



 

of the candidate norm. For example, people may be more 

likely to expect norms are inclusive when considering 

population-level evidence (such as the evidence in the present 

study) and more likely to expect norms are parochial when 

considering essentialist exemplars (such as the evidence 

provided in Roberts and colleagues’ work). Such a shift in 

expectations about which hypothesis to favor under a given 

circumstance can be expressed in terms of overhypotheses 

and thus constitutes a possible extension of the Bayesian 

framework proposed here.  

Thus, the proposed Bayesian framework merits future 

empirical testing and theoretical refinement. Important steps 

forward include testing the framework under a greater range 

of experimental manipulations, building from the novel 

groups paradigm used here, as well as testing the framework 

in developmental contexts and under conditions of higher 

external validity. For now, the present findings suggest that 

certain key components of normative inference can indeed be 

statistically appropriate, given the evidence available to 

learners.  
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